Company: D'autres
Created by: isalama
Number of Blossarys: 2
- English (EN)
- Albanian (SQ)
- Chinese, Simplified (ZS)
- Farsi (FA)
- Russian (RU)
- French (FR)
- Arabic (AR)
- Bulgarian (BG)
- Indonesian (ID)
- Japanese (JA)
- Romanian (RO)
The partition function, p(n), counts the number of ways the integer n can be written as a sum of positive integers. For example, p(4)=5 because there are 5 way to write the number 4 as a sum of whole numbers: 4= 1+1+1+1 = 1+1+2 = 1+3 = 2+2 = 4 The partition function grows rapidly. With some hard work one could check that p(10)=42. It is a fact, which one could not verify by hand, that p(100) = 190,569,292 and p(1000)=24,061,467,864,032,622,473,692,149,727,991.
The partition function, p(n), counts the number of ways the integer n can be written as a sum of positive integers. For example, p(4)=5 because there are 5 way to write the number 4 as a sum of whole numbers: 4= 1+1+1+1 = 1+1+2 = 1+3 = 2+2 = 4 The partition function grows rapidly. With some hard work one could check that p(10)=42. It is a fact, which one could not verify by hand, that p(100) = 190,569,292 and p(1000)=24,061,467,864,032,622,473,692,149,727,991.